

EGC221: Digital Logic Lab

Experiment #5

Arithmetic Circuits Using Altera Quartus Prime

Student's Name:	Reg. no.:
Student's Name:	Reg. no.:
Semester: Spring 2021	Date: 24 February 2021

Assessment:

Assessment Point	Weight	Grade
Methodology and correctness of results		
Discussion of results		
Participation		
Assessment Points' Grade:		

Comments:		

Experiment #5:

Full Adder Circuit Implementation

Objectives:

The objectives of this experiment are to:

- 1. Get familiar with Altera Quartus Pime
- 2. implement a full-adder using logic gates,
- 3. implement a 4-bit ripple carry adder (using logic gates), and
- 4. Modify the 4-bit adder such that it is capable of 4-bit addition/subtraction.

Procedure:

1. Become familiar with Altera Quartus Prime toolset by going through the <u>Tutorial on</u> <u>Quartus Prime Schematic Capture.</u>

2. Use Altera's Quartus Prime Schematic to solve Exercise 1.

Exercise 1:

(a) Given Table 1 below, complete the truth table for a full adder, and derive the logic expression for Sum and Cout.

А	В	Cin	Sum	Cout
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Table 1. 1-bit Full Adder using basic gates truth table

Logic Expression:	Sum:
Logic Expression:	Cout:

(b) Use <u>Quartus Prime Schematic</u> to provide the full-adder circuit diagram:

[Insert circuit diagram here]

Figure 1. Quartus Prime circuit diagram of full-adder

(c) Use <u>Quartus Prime Schematic</u> to provide functional and timing verifications:

[Insert functional verification timing diagram here]

[Insert timing verification timing diagram here]

Figure 2. Quartus Prime simulations of full adder (functional is shown on top, and timing below)

Next, create a block diagram of the design in Figure 1 per <u>Quartus Prime Schematic</u> tutorial and continue with Exercise 2.

Exercise 2:

Using the circuit design from exercise 1 (Full Adder) and a hierarchical approach (as shown in Figure 3 below), create a 4-bit Binary Ripple Adder.

Figure 3. Hierarchical block diagram of 4-bit adder

(d) Use Quartus Prime Schematic to provide the 4-bit adder diagram: [Insert circuit diagram here]

Figure 4. Quartus Prime circuit diagram of 4-bit adder

(e) Use Quartus Prime Schematic to provide functional and timing verifications: [Insert functional verification timing diagram here]

[Insert timing verification timing diagram here]

Figure 5. Quartus Prime simulations of 4-bit adder (functional is shown on top, and timing below)

Exercise 3:

Modify the 4-bit adder from part (d), to implement a 4-bit adder/subtractor.

(f) Use Quartus Prime Schematic to provide the 4-bit adder/subtractor circuit diagram:

[Insert circuit diagram here]

Figure 6. Quartus Prime circuit diagram of 4-bit adder/subtractor

(g) Use Quartus Prime Schematic to provide functional and timing verifications: [Insert functional verification timing diagram here]

[Insert timing verification timing diagram here]

Figure 7. Quartus Prime simulations of 4-bit adder/subtractor circuit (functional is shown on top, and timing below)

Finally, verify the circuit by downloading on Altera DE10 board and have it signed by your instructor or TA.

Conclusions: